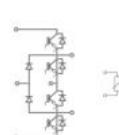


SEMITRANS® 5

Trench IGBT Modules

SKM200MLI066TAT

Features


- Homogeneous Si
- Trench = Trenchgate technology
- $V_{CE(sat)}$ with positive temperature coefficient
- Integrated NTC temperature sensor

Typical Applications*

- UPS
- 3 Level Inverter

Remarks

- Case temperature limited to $T_c = 125^\circ\text{C}$ max
- Recommended $T_{op} = -40..+150^\circ\text{C}$
- T_{vj} is intended as absolute maximum rating
- Fig.2 is referred to IGBT current capability

MLI-TAT

Absolute Maximum Ratings		$T_{case} = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	Values		Units
IGBT				
V_{CES}	$T_j = 25^\circ\text{C}$	600		V
I_C	$T_j = 175^\circ\text{C}$ $T_c = 25^\circ\text{C}$ $T_c = 80^\circ\text{C}$	280 210		A A
I_{CRM}	$I_{CRM} = 2 \times I_{Cnom}$	400		A
V_{GES}		± 20		V
t_{psc}	$V_{CC} = 360\text{ V}$; $V_{GE} \leq 15\text{ V}$; $T_j = 150^\circ\text{C}$ $V_{CES} < 600\text{ V}$	6		μs
Inverse Diode				
I_F	$T_j = 175^\circ\text{C}$ $T_c = 25^\circ\text{C}$ $T_c = 80^\circ\text{C}$	270 200		A A
I_{FRM}	$I_{FRM} = 2 \times I_{Fnom}$	400		A
I_{FSM}	$t_p = 10\text{ ms}$; half sine wave $T_j = 150^\circ\text{C}$	1310		A
Freewheeling Diode				
I_F	$T_j = 175^\circ\text{C}$ $T_c = 25^\circ\text{C}$ $T_c = 80^\circ\text{C}$	270 200		A A
I_{FRM}	$I_{FRM} = 2 \times I_{Fnom}$	400		A
I_{FSM}	$t_p = 10\text{ ms}$; half sine wave $T_j = 150^\circ\text{C}$	1310		A
Module				
$I_{t(RMS)}$		500		A
T_{vj}		-40 ... +175		$^\circ\text{C}$
T_{stg}		-40 ... +125		$^\circ\text{C}$
V_{isol}	AC, 1 min.	2500		V

Characteristics		$T_{case} = 25^\circ\text{C}$, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	
IGBT					
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 3,2\text{ mA}$	5	5,8	6,5	V
I_{CES}	$V_{GE} = 0\text{ V}$, $V_{CE} = V_{CES}$ $T_j = 25^\circ\text{C}$			0,5	mA
I_{GES}	$V_{CE} = 0\text{ V}$, $V_{GE} = 20\text{ V}$ $T_j = 25^\circ\text{C}$			1200	nA
V_{CE0}	$T_j = 25^\circ\text{C}$ $T_j = 150^\circ\text{C}$	0,9 0,7	1 0,8		V
r_{CE}	$V_{GE} = 15\text{ V}$ $T_j = 25^\circ\text{C}$ $T_j = 150^\circ\text{C}$	2,7 5	4,5 6,5		$\text{m}\Omega$
$V_{CE(sat)}$	$I_{Cnom} = 200\text{ A}$, $V_{GE} = 15\text{ V}$ $T_j = 25^\circ\text{C}_{\text{chiplev.}}$ $T_j = 150^\circ\text{C}_{\text{chiplev.}}$	1,45 1,7	1,9 2,1		V
C_{ies} C_{oes} C_{res}	$V_{CE} = 25\text{ V}$, $V_{GE} = 0\text{ V}$ $f = 1\text{ MHz}$	12,3 0,76 0,36			nF
Q_G	$V_{GE} = -15\text{ V}...+15\text{ V}$		2254		nC
R_{Gint}	$T_j = 25^\circ\text{C}$		1		Ω
$t_{d(on)}$ t_r E_{on}	$R_{Gon} = 22\text{ }\Omega$ $di/dt = 2000\text{ A}/\mu\text{s}$	$V_{CC} = 300\text{ V}$ $I_C = 200\text{ A}$	78 68 2,53		ns ns mJ
$t_{d(off)}$ t_f E_{off}	$R_{Goff} = 1\text{ }\Omega$ $di/dt = 2000\text{ A}/\mu\text{s}$	$T_j = 150^\circ\text{C}$ $V_{GE} = -15\text{ V}/+15\text{ V}$	314 80 6,82		ns ns mJ
$R_{th(j-c)}$	per IGBT		0,21		K/W

SEMITRANS® 5

Trench IGBT Modules

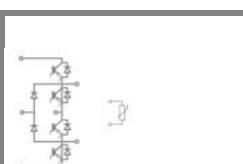
SKM200MLI066TAT

Features

- Homogeneous Si
- Trench = Trenchgate technology
- $V_{CE(sat)}$ with positive temperature coefficient
- Integrated NTC temperature sensor

Typical Applications*

- UPS
- 3 Level Inverter


Remarks

- Case temperature limited to $T_c = 125^\circ\text{C}$ max
- Recommended $T_{op} = -40..+150^\circ\text{C}$
- T_{vj} is intended as absolute maximum rating
- Fig.2 is referred to IGBT current capability

Characteristics		Symbol Conditions	min.	typ.	max.	Units
Inverse Diode						
$V_F = V_{EC}$		$I_{Fnom} = 200 \text{ A}; V_{GE} = 0 \text{ V}$ $T_j = 25^\circ\text{C}_{\text{chiplev.}}$ $T_j = 150^\circ\text{C}_{\text{chiplev.}}$		1,4	1,6	V
V_{F0}		$T_j = 25^\circ\text{C}$ $T_j = 150^\circ\text{C}$		0,95	1	V
r_F		$T_j = 25^\circ\text{C}$ $T_j = 150^\circ\text{C}$		0,85	0,9	V
I_{RRM}		$I_F = 200 \text{ A}$ Q_{rr} E_{rr} $V_{GE} = -15...+15 \text{ V}; V_{CC} = 300 \text{ V}$	$T_j = 150^\circ\text{C}$			A
$R_{th(j-c)D}$	per diode			4		μC
						mJ
Free-wheeling diode (Neutral Clamp Diode)						
$V_F = V_{EC}$		$I_{Fnom} = 200 \text{ A}; V_{GE} = 0 \text{ V}$ $T_j = 25^\circ\text{C}_{\text{chiplev.}}$ $T_j = 150^\circ\text{C}_{\text{chiplev.}}$		1,4	1,6	V
V_{F0}		$T_j = 25^\circ\text{C}$ $T_j = 150^\circ\text{C}$		0,95	1	V
r_F		$T_j = 25^\circ\text{C}$ $T_j = 150^\circ\text{C}$		0,85	0,9	V
I_{RRM}		$I_F = 200 \text{ A}$ Q_{rr} E_{rr} $V_{GE} = -15...+15 \text{ V}; V_{CC} = 300 \text{ V}$	$T_j = 150^\circ\text{C}$		175,8	A
$R_{th(j-c)FD}$	per diode			12		μC
$R_{th(c-s)}$	per module			4		mJ
M_s	to heat sink M6		3	5		Nm
M_t	to terminals M6		2,5	5		Nm
w					310	g
Temperature sensor						
R_{100}		$T_s = 100^\circ\text{C} (R_{25} = 5\text{k}\Omega)$			493±5%	Ω
						K

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.

MLI-TAT

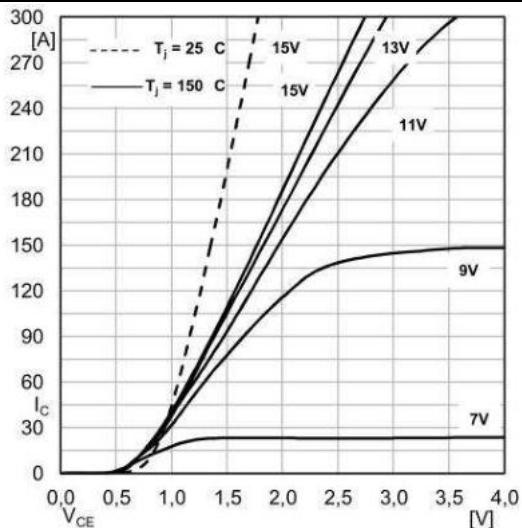


Fig. 1 Typ. output characteristic, inclusive $R_{CC} + EE$

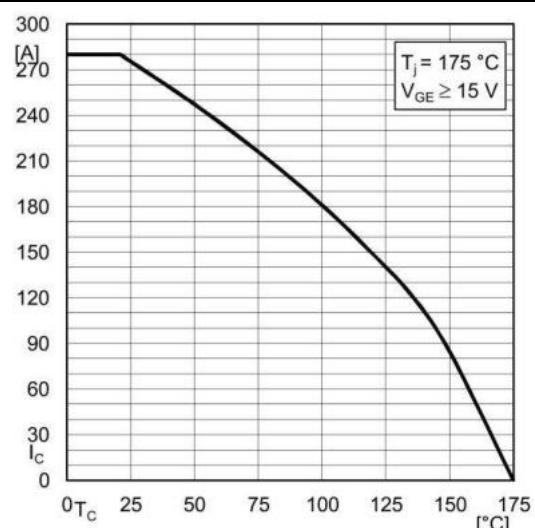


Fig. 2 Rated current vs. temperature $I_C = f(T_C)$

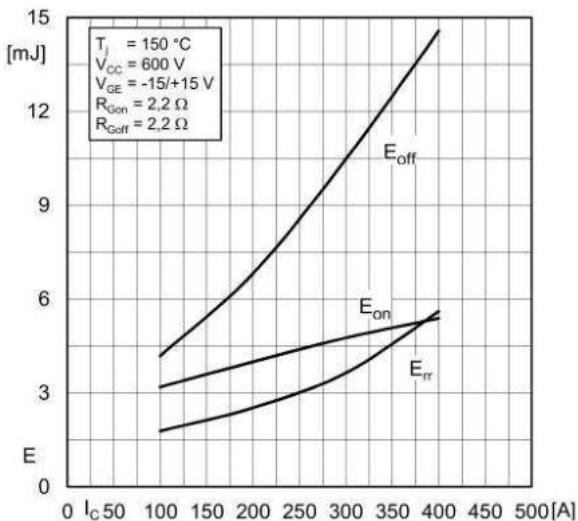


Fig. 3 Typ. turn-on /-off energy = $f(I_C)$

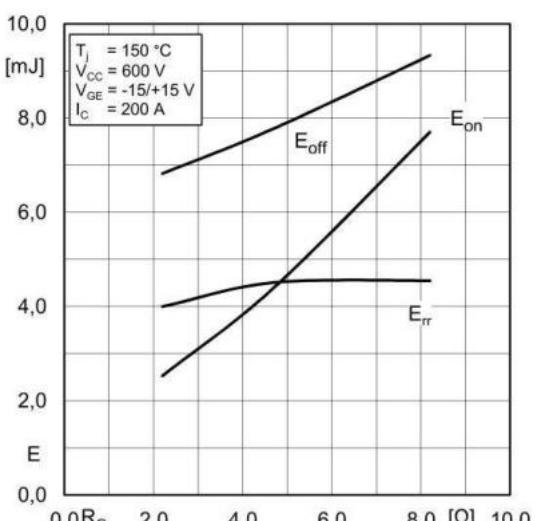


Fig. 4 Typ. turn-on /-off energy = $f(R_G)$



Fig. 6 Typ. gate charge characteristic

SKM200MLI066TAT

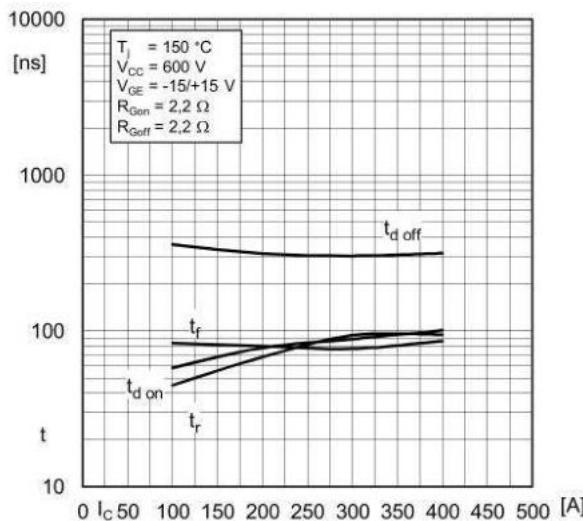


Fig. 7 Typ. switching times vs. I_C

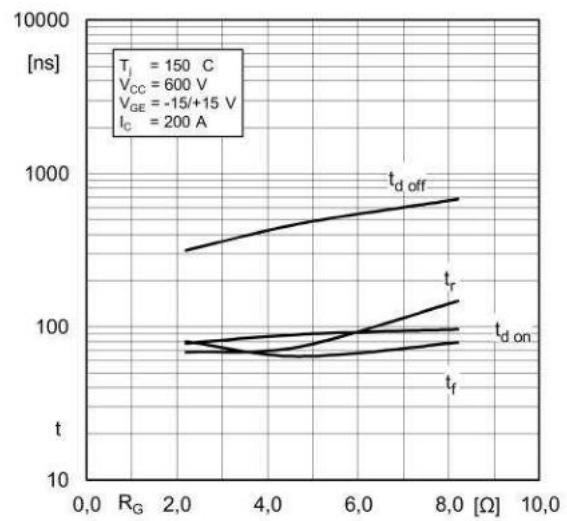
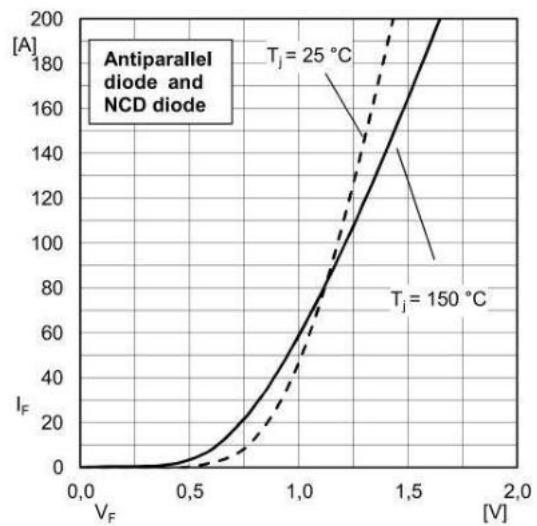
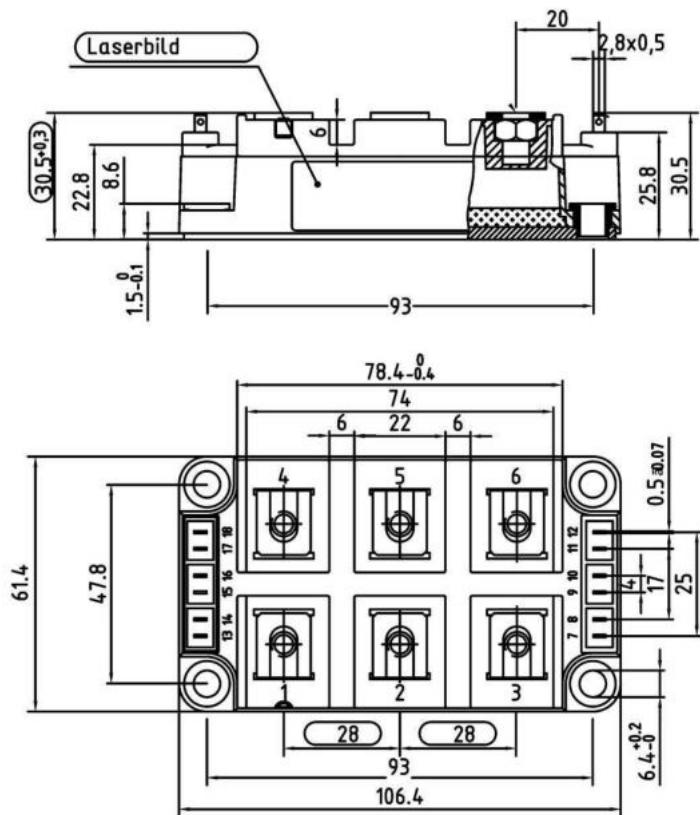
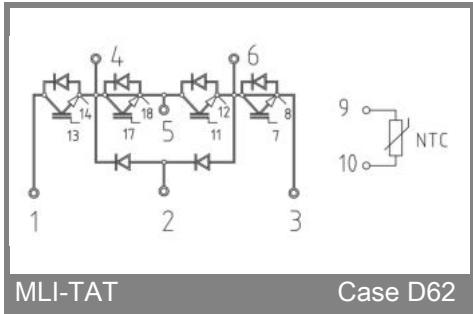


Fig. 8 Typ. switching times vs. gate resistor R_G


Fig. 10 CAL diode forward characteristic

UL recognized

file no. E 63 532

Case D62

MLI-TAT

Case D62